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1. Introduction

In order to significantly improve the ability to detect underground nuclear explo-
sions using seismic measurements and to minimize the biases and uncertainties associ-
ated with yield estimations. there has been a recent trend towards the use of extended-
band seismic data in regional distance ranges. This data holds out the potential of higher
resolving power than the traditional teleseismic data which has been used over the years
for monitoring underground nuclear testing in the Soviet Union, however the regional
discnminants in use today have been determined largely in an empirical fashion from
data collected in the United States and their applicability to other regicns, such as the
Soviet Union, is not completely obvious. This 1s due to the fact that we do not under-
stand, from a theoretical seismological standpoint, many of the properties of seismic
arrivals that are used in regtonal discriminants, P,. S,, P, and L,, thus making it difficult to

extrapolate these properties to a different setting.

Confidence in our discrimination and yield estimation methods is, to a large extent.
dependent upon our understanding of P,, S,, P, and L, propagation and the roles played by
frequency dependent anelastic attenuation and the depth dependence of structural elastic
parameters in the crust, at the Moho and in the upper mantle. Suitable velocity gradients
in the vicimty of a major structural discontinuity, such as the Moho. can have large
effects on the associated seismic arrival, P, and low velocity zones or zones of "random-

ized laminations” within the crust can act as very efficient waveguides to trap seismic




‘am'vals, such as P,. Simple ray-based modeling. that has been very successful at telese-
ismic distances, can produce incorrect and misleading results when applied to regional
problems. In addition, we have found that even "complete” synthesis methods can
mislead us if we fail to represent the fundamental characteristics of hypothetical struc-

tural models correctly.

In this paper we report on the initial results of a long term study which is aimed at
obtaining understanding of the fundamental processes involved in regional seismic wave
propagation and what the data that we observe tell us about the nature of the earth’s crust
and upper mantle. With this knowledge we will be able to more confidently resolve
detailed source characteristics and make it possible to significantly improve detection and

yield estimation capabilities.

Our basic objective 1s to develop an inversion algorithm which will directly com-
pare broadband regional data with complete synthetic scismograms to infer detailed
structure and source properties. This objective i1s ambitious and touches on most areas of
seismology. both observational and theoretical. As a staiting point, we began by using
the results of other rescarchers, such as Gomberg and Masters.! who have successtully
inverted for crust and upper mantle structural parameters by directly comparing complete
locked mode synthetic seismograms with the observed data in the time doman. The key
to this inversion is the use of synthetic differenual seismograms which describe the
linearized relationship between model parameters and the resulting synthetic seismo-
grams. These provide the Frechet dertvatives that are necessary 1n the inversion and 1t is

important that they be computed accurately and efticiently.

Previous inversion efforts of this type have all been hmited 1o low frequencies (less
than 0.2 Hz) and have directly compared synthetics with data in the tme domain. Qur

' Gomberg, J and Masters, T, 1988, Waveform modellng ustng focked-made synthetic and
differential seismiograms apphcation to deternunation of the stiuctuie of Mexico, Geophvecal
Journal of the Royal Astronomical Society. vV 94 p 193218




objective 1s to push this inversion to the highest frequencies that will produce useful
results and we would certainly hope to get to at least 1 hz. In order to accomphish this 1t 1s

necessary to solve the following key problems.

e  The development of an accurate and efticient algorithm for computing differential

seismograms which are necessary for the inversion procedure.

e  The development of better methods for imcorporating anelastic attenuation into

modal synthesis computations.

e  The determination of starting solutions that will produce synthetic seismograms

which have the same general characteristics that we see in the data.

In section 2 we discuss our results in developing an exact differential seismogram
program. This was necessary because the traditional first order perturbation method for
computing differential seismograms proved to be inadequate for our problem. In section
3 we talk about how we have dealt with the problems related with anelastic attenuation
and 1n section 4 we show results that give us a powerful new way of looking at the
earth’s crust which provides us with an easy method for modeling many of the charac-

teristics that we see 1n broad band regional data.

2. Computation of Differential Seismograms at High Frequencies

The standard method for computing differential seismograms makes use of first
order perturbation (FOP) theory and 1s described by Takeuch: and Saito.? In this tech-
nique Raylergh’s principle 1s used to find expresstons for the effects of small changes of
the elastic properties on the phase velocities of normal modes. These expressions relate
the partial denvatives of the eigenvalues to depth integrals of the un-perturbed eigen-
functions and make 1t possible to compute eigenvalue derivatives implicitly without

direct apphcation of the chain rule through the entire sequence ot computations. The

2 Takeuclu, H. and Saito. M., 1972, Sersmic Suiface Waves Methods in Computational Phy-
sics.v. 1, p 217-294, ed Bolt, B, Acadennc Press. New York




resulting formalism makes 1t possible to compute eigenvalue denivatives etficiently and
accurately and this method has been used extensively throughout the seismological com-
munity. However, the variational principle does not produce eigenfunction dertvatives so
use of this method imphes that the eigentfunction derivatives will be neglected in the final

differential seismograms.

In cylindrical coordinates we can express the frequency dependent P-SV displace-

ment vector, u,, for a single normal mode, n, as follows.

u(r.0.z) =k} [[Z(kn,m)] (E (n.z)) |E (nz)P(k,an, 8,) + E;(n,z,)B(k,,,m.l,.8, ': } 2.1

where,
m  1s the azimuthal order number,
r. 15 the radial distance to the receiver,
8, 15 the azimuth to the recciver.
z, 15 the depth of the recetver,
z, s the depth of the source,
k. 15 the frequency dependent eigenwavenumber for mode n.
(Z] s the tfrequency dependent four component source jump vector,
[E] s the trequency and depth dependent four component eigenfunction vector,
P.B are the P and B vector cylindrical harmonic components.
By simple application of the chain rule we can express a differenual displacement.

du /v, where v 1s a model parameter. as follows.

du Jo =0k f0vy wfk, + K.Y O[Ok (£ 1 £ P o E B+ [LIE ) £ 0Pk + £ ook ]] 12.2)
. i ‘ "J

1

SRV (EIOIE 1jov) £ P+ F B+ [XIE | (QE/dv)P +(QE /0 B |

When using FOP theory to compute differennal scismograms. only the first term i cqua-
tion (2.2) which depends on the ergenvalue denvative, (9k./ov), 1s used and the rematng

terms in (2.2) which depend on the eigentunction dervatves, dif {/ov). (0F,/ov) and




(0E-/v), are 1gnored.

Our imual implementation of a ditferenuial seismogram synthesis program used the
standard FOP approach. Since we were planning on using the differential seismograms at
relatively high frequencies. we felt that 1t would be prudent to carefully check the vali-
dity of the approximation that we were using. We did this by compuung a set of difter-
ence seismograms where we took an imtial structural model and computed locked mode
seismograms, made a small change in a single model parameter and computed new
locked mode synthetic seismograms, differenced the new seismograms with the original
scismograms and repeated this process for the other model parameters. In this way we
were able to obtain approximations to the exact first order Taylor series terms which
included all terms n equation (2.2) and which were numerically accurate as long as the
parameter changes were small enough so that the first order term 1in the Taylor series

dominated the higher order terms.

Figure 1 shows the results of a companson of analytic differential seismograms,
labeled H4POS. which neglected the ergenfunction derivatives . versus difference seismo-
grams, labeled S4P05. These seismograms were computed for a simple layer over a half
space structure representing a crustal layer over the upper mantle and the difference and
differential scismograms are with respect to the P-wave velocity in the crust layer. The
bandwidth oi ihese scismograms 15 0-2 hz and the source receiver distance 1s 500 km.
From this figure it 1s obvious that the analvtical differential seismogram using FOP
theory 1s i ciror. The time window shown in figure | represents the early part of the P,
wave train and when we looked at S-wave differentials later during the Rayleigh wave
we got good agreement. This shows that FOP theory 1s not adequate for computing dif-
ferential seismograms at frequencies around 1 hz.

In order to convince ourselves that the problem was associated with neglecting the
eigenfunction derivatives. we conducted an expenment where we replaced the cigentunc-

tions for the perturbed seismograms betore differencing with those of the unperturbed

‘I
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seismograms and recomputed difference scismograms where the eigenfuncuons were
forced to remain constant. In this case comparisons of our modified difference seismo-
grams and the analytical FOP differential scismograms were very good. indicating that

the problem was associated with changes 1n the eigentunctions.

We then developed a computer code which computes differential seismograms
analytically without neglecting the eigentunction derivatives. This proved to be a tedious
and difficult task, however we were able to develop a program which is accurate and
relatively efficient, certainly when compared to the differencing approach. Our method in
developing this program was straightforward:

° We abandoned using a variational principle, which mvolves depth integrals of the
cigenfunctions, for computing the eigenvalue derivatives and replaced this approach
with explicit derivative computations using the chain rule. This was a tedious and
laborious process which involved carrying derivative computations through the
entire chain of algebraic operations. however we found that, after some rearrange-
ment and algebraic simplification. the resulting numerical algorithm was relatively

efficient.

e  We then checked that the eigenvalue derivatives matched those from the vanational
computations and we also checked against numerical eigenvalue derivatives from

our difference seismograms.

e  Since the denvative computations had been carried through all of the intermediate
steps. 1t was then relatively straightforward to extend these computations to produce

etgenfunction dervatives.
e The modal summation expressions were then moditied to conform with equation
(2.2) to produce exact differential seismograms.
Figure 2 shows a comparison of our exact differential seismogram- | labeled SA10S.
with the difference seismograms, labeled S2P0S. 1t 15 obvious from this figure that the

comparison 1s very good and it s hikely that the residual error 1s due to the numerical




approximation implicit in the difference secismogram. An example showing exact dif-
ferential seismograms for a realistic regional situation with a complex structural model
can be seen in figures 3 - 6. The structural P and S velocities are shown in figure 3 for a
70 layer model. As can be seen, the velocity vs. depth profiles have a random component
which we will discuss in detail in section 4. ‘This structure represents a starting estimate
for the region around the Soviet nuclear test site at Semipalatinsk, KSSR. Figure 4 shows
differential seismograms with respect to P-wave velocities tor each layer in the model.
The 70 differential seismograms are plotted one above the other as a function of layer
index and the original synthetic seismogram is also shown at the top of the figure for
reference. Figure 5 is the same as figure 4 except that the S-wave differential seismo-
grams are shown. Figure 6 is a repeat of figure 4 except the vertical axis is layer index

instead of depth (for comparison with figures 3 and 4.

Figures 3 and 4 give us much information about the nature of the regional setsmic
wave propagation for thus example. The source-recetver distance s 254 km and we can
see how different regions within the crust eftect the resulting seismograms. The L, coda
1s primanly controlled by the very near surface part of the crust although the nitial por-
tion of the amval responds to the entire crust. The P, coda is also strongly effected by
near surface structure and we can clearly see the strong direct Moho reflection. PP, as a
vertical streak down to layer number 55. Both P, and S, can also be secen in the differen-

tial seismograms at the bottom of the model.

3. Incorporation of Anelastic Attenuation in Locked Mode Synthetic Seismograms

The standard method for incosporating anelastic attenuation m modal summation
seismogram synthesis methods has always involved the use of FOP theory. As we have
seen with the differential Leismograms, there 15 reason 1o question the accuracy of FOP
theory in accounting tor Q effects. Other rescatchers have encountered this problem?

¥ Day. S, McLaughlin, K, Shkoller, B and Stevens. J . 1989, Potenitial errors m locked mode
synthetics for anelastic earth modeis, Geopiivsical Rescaich Letters, v 16, p. 203-200
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and, as with the ditferential seismograms. the problem seems to become more pro-

nounced at higher frequencies and higher phase velocities.

In our early efforts to address this problem, before we had solved the differential
seismogram problem, we developed a method for locating the complex eigenvalues
exactly along with a complex version of the eigenfunction and modal summation codes.
These programs work very well, even in situations where the Q is low, although the ver-
sions of the programs that we initially developed are not very efficient. Our success with
the differential seismograms provides another track for solving the modal Q problem.

Q corrections using FOP theory involve the computation of eigenvalue shifts result-
ting from complex elastic parameter shifts due to the intninsic attenuation. This normally
results in purely imaginary shifts of the eigenwavenumbers® which are then represented
in the modal summation as frequency dependent decaying exponential terms. Thus nor-
mal modal Q corrections 1gnore the eigenfunction shifts in the same manner as FOP dif-
ferential seismograms. In high frequency - high phase velocity situations, the resulting Q
corrections are in error even for very high Q values.

We have started the development of an "exact first order” modal Q correction algo-
rithm based upon the cigenfunction derivative capabilities that we developed for the dif-
ferential seismograms. This will provide an efficient means for computing modal Q
corrections that will always be accurate. as long as the Q values are sufficiently high so
that the first order expansion is vahd. Initial results from this work indicate that we are

close to achieving this goal.

4. Velocity Randomization and Its Effects on Regional Synthetic Seismograms

When mnvestigating an extended band regional seismogram. one is struck by the

large amount of information that scems to be contained within the seismic signal. One

4 The shifts are purely imagmary as long as ) relared dispersion effects in the real parts of the
elastic wave velocities are neglected




does not see simple ray arrivals with well defined coherent wavelets, but instead. arrivals
characterized by complex wavetrains with onset times that are often difficult to deter-
mine. Typical regional seismograms that were recorded near the Soviet nuclear test site
at Semipalatinsk are shown in figures 7 and 8. Figure 7 shows vertical components at
four stations from the Soviet JVE nuclear test as a function of receiver range from the
shot site. These are all broad band seismograms (1 - 50 hz). The stations at 170 km and
253 km were the temporarily r¢-occupied NRDC sites of Karasu (KSU) and Karkaralimsk
(KKL) and the stations at 1350 kim and 1529 km were the IRIS statons at Chusal (CHS)
and Arti (ARU). Figure 8 was taken trom an Amenican Geophysical Union poster scs-
sion’ and shows the CHS and ARU data after applying a 0.8 - 2 hz passband filter, as
well as additional data from a Peaceful Nuclear Explosion (PNE) which took place n

northwestern USSR.

These data are typical of regional explosion events in the shield region of central
and northern asia and from these data we can make the following obscrvations.

e The P, arrival 1s energetic and well developed at all distances above 250 km where
it first emerges from the P, wavetrain,
e  L,s clearly defined for distances less than 2000 km but disappears above 2500 km.

The L, to P, amplitudes stay about onc.

e Apparent Q values are relatively high. High frequency cnergy  propagates
etficiently.

Most researchers attribute the incoherence of regional wavetrains to “lateral scatter-
ing” which 1s normally intended to mean some three dimensional distnibution of struc-
tural inhomogeneities. It we assume a simple uniform distribution of scatterers i space.
at a vanety of wavelengths. then the scattering of a coherent wavetront propagating
?Si(nvw_;l . l;cdhn, M Borger 1o Vanon ¥ oKappus, ML Chavez, D and Astern R Regaone
dal seisanic observations ot nuclear explosions mside the Soviet Union, Poster presented at the

Amencan Geophysical Unron meeting. Decentber 1988, abstract appeared i EOS. Tians . Annel
Geophvs Union, v 69, p 132}
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through the medium will result in an attenuation effect of the coherent wavefront along
with incoherent scattered cnergy that follows the coherent wavefront in a coda. The net
effect is that the energy gets "smeared out” spatially so that arrivals are weaker than they
would have been in a smooth medium.

A weak uniform scattering medium will result in high apparent Q values with short
and weak attendant coda and a strong uniform scattering medium will result m low
apparent Q values with long and energetic coda. The data we observe in the Soviet Union
indicates relatively high Q values. which indicates a weak scattering medium. yet the
coda are strong, which indicates a strongly scattenng medium. A way of resolving this
dilemma 1s to look for other scattering mechanisms which allow for efficient propagation

of seismic encrgy while scattenng the coherent arnvals strongly to produce the coda we

observe.

We have been investigating such a scattering mechanism which assumes that the
structural inhomogeneities are anisotropic, Le. the scale length of the inhomogenetties is
different in the vertical direction than it i1s in the horizontal direction. The simplest such
anisotropic scatterers to model are those which are uniform in the horizontal direction
and arbitrarily inhomogeneous in the vertical direction. Of course, this modeling capabit-
ity has becn in existence for some time now, however researchers using laterally homo-
geneous synthetic seismograms have always used smooth or what we would call "large
scale blocky” structural models which will not produce the types of scattering that we

would expect in a "random” medium.

The results from a traditional smooth model are shown in figure 10, which displayvs
vertical component synthetic seismograms as a function ot source-recerver distance for
the structural model given in tigures 9a and 9b. The amplitude scales are adjusted by a
factor. The structural model represents the castern Kazakhstan region and we represent
velocity gradients with homogencous laver approximations. The velocity gradients

helped considerably 1n boosting the 1elative amphtude of P over what it was without the
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Figure 10. Synthetic vertical components for the base Kazakh model in fig.

9a-9b.
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gradients, however the seismograms are simple when compared with the data.

An example of synthetic seismograms produced from a vertically "randomized”
structure 1s shown in figure 11, The amplitude scales are the same as those tor figure 10
The structure mudcl 15 shown in figures Y¢-9d and was determined by using the smooth
model 1 figures 9a-9b and applying a random Auctuation with depth dependent layer
thickness and vanance. We decided to use 100 meter laver thicknesses for the upper 2
km and 1000 meter layer thicknesses clsewhere. We also used high variances ncar the
surface and decreased the vanance with depth. Our intent was to crudely match the sort

of near surfacc velocity variances seen in well logging measurements.

A comparison of figure 11 wath tigure 10 shows many interesting charactenistics of
anisotropic scattering which are given below.
. Strong and persistent coda are gencrated throughout the seismograms tor the verti-
cally randomized structure. The later arnving phases, P, S, and L. although
coherent and easy to identify in the smooth structure are incoherent with ambiguous

onset times 1n the vertically randomized structure.

e  The sersmograms for the vertically randomized structure are much more energetic
throughout the duration than those of the smooth structure. Not only has strong
coda becen generated 1n the "dead” regions of the seismogram, but the amplitudes of

all of the initial armivals have been preserved as well.

These results are significant in that they show how anisotropic scattering is funda-
mentally different from isotropic scattening. Instead of attenuatung and spreading out the
signals as a uniform scattering matenal would do. a vertically randomized medium
focuses the scismic encrgy while scattering it at the same time. The horizontal lamina-
tions introduce numerous fow velocity zones with many horizontal layer interfaces that
tend to trap the seismic energy simmlar to the way a fiber optic cable traps light. This
energy 1s tree to propagate honizontally, however it 1s inhibited from propagating verti-

cally and thus energy that would normally propagate away through the bottom of the
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structure is kept concentrated 1n the crust and upper mantle. The introduction of hornizon-
tal laminations within a region effectively introduce a negative Q etfect simce they will
trap energy within the laminations and thus overcome the normal thice dimensional
geometric spreading effect. The focusing associated with stuctural lamnanons s dit-
ferent from focusing that is normally associated with other three dimenstonal lenses.
Most structural lenses focus seismic energy 1nto small and well detined regions. however
structural laminations channel seismic energy into broad honzontal sheets so that the
tocusing effect can be seen over large distance ranges.

The 1ntroduction of vertical randomization into smooth structural modeis will play
an important role in explaining regional seismograms. This gives us an explanable.
plausible and implementable method for modehing the features that we sce i the data,
such as the apparent contradiction of high Q values and strongly scattered coda. We think
that this will also strongly eftect how Q estimates are made and. ulumately. yield estima-
tions. We can see from these examples that vertical randomization can have very pro-
nounced effects on seismic energy levels that could otherwise be mterpreted incorectly.
We were able to pump up the P, coda arbitranily by putting large tandom tfluctuations at
the depth where, trom the differential seismograms. we knew the Pooenergy travels. We
are currently testing new models in which we have put regions ot high lamination at the

Moho depth 1n order to pump up the P, portion of the scismogram.

In figure 12 we show a comparison of real data with a synthetic seismogram that we
computed using the randomized structure given in figures Ye-9d. This shows the vertical
component at KKL which was about 250 ki from the shot and both the daty and the svn-
thetic have been filtered so that the passband of comparison 1s about T to 2 hy This s one
of the best real-synthetic matches of regronal data in this frequency tange that we have
secn and we think that this type of qualitatnve match 1s necessary betore a formal imver-

ston procedure can be reasonably expected to produce meanmingtul results

[ )
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5. Conrlusions

In order to improve our abihities to discriminate low-yield nucl. ar explosions and to
obtain accurate yield estimates, we have undertaken a study to mfer detailed source and
structure parameters by direct nversion of broad band regional seismic data using
laterally homogeneous forward modeling methods. We have identiticd three key prob-
lems which must be solved 1n order to accomphish our objective: the development of an
accurate and efficient algorithm for computing differenual seismograms which are neces-
sary for the nversion procedure, the development of better methods for incorporating
anelastic attenuation into modal synthesis computations, and the determination of starting
solutions that will produce synthetic seismograms which have the same general charac-
teristics that we see 1n the data.

We have made significant progiess in each of these problems. We determined that
the normal first order perturbation theory method for computing ditferential seismograms
was inadequate for higher frequencies and phase - . .nes and we have developed and
tested an eract analytic differentiz! s=ismogram program. We also have Jdeveloped an
exact complex pole based m-thod for coraputing modal seismograms which avoids the
use of first arder perturbation theory tor incorporating anelastic attenuation. We are in the
process of developing an exact first order Q correction along the hines of the exact dit-
ferential seismogram progrem whict: we hope will provide an cefticient means for ncor-
porating Q ettects.

Our most significant discovery 1s that antsotropic scattering produces the types of
ettects that can be seen in the observed data We consider this to be our most nnportant
result to date because it Fas proven to be difticult to produce synthetic seismograms that
match the grows characterist ¢« of hroad band regronal data: Many rescaichers attiibute
this difhculty to complex and indeternunate lateral scattening processes. I thev are rnght.
then it s unhikely that we will understand the nature of regronal wave propagation and

we will be forced to resort almost entirely to empirical methods tor domg in-countiy
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yield esnimation. We have discovered that a.a explainable, plausible and implementable
method for modeling the features that we see in the data is to use vertically randomized

structural models in laterally homogeneous modeling codes.

We think that the idea of horizontal laminations within the earth is very plausible
and we have demonstrated that the consequences are significant. We know trom well log
measurements that the near surface earth structure looks like a stochastic process with
depth. We can only speculate about the detailed nature of the structure at depth, however
it is unreasonable to rule out the possibility of laminated structures deeper in the earth. A
reasonable hypothesis for tiansition zones, like the Moho, 1s a region where the material
on one side gradually "feathers" into the material on the other side to produce a lamina-
tion zone with many thin layers of different material properties. Such a zone couid look
like a velocity gradient in travel ime studies and for longer wave length waves, however
at higher frequencies the seismic energy would be efficiently trapped within the lamina-

tions.

With the results from our studies to date we feel that we are in a good position to
continue our efforts toward the development of full wave regional inversion capabilities.
We are continuing our work 1n this area and we feel confident that we will realize our

objectives.
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